DyALog Primer

Building tabular parsers and programs
DyALog version 1.10.5, 24 February 2004

Eric de la Clergerie

This manual documents DyALog (version 1.10.5, 24 February 2004).
Copyright (©) 1997 — 2004 INRIA.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

Short Contents

Introduction s v v v v v oo v v v e oo v e esveoesoesesocoasoces 1
Notational conventionS. ¢« o o o e oo v v e oo v voesoesssoeosses 2
1 Installation o oo e v e v v e s e seeeesoenesocossoonss 3
2 Using DYALOZ ¢ e v v v vttt ittt e ieeeeennnnoonssssss 4
3 Behindthescreen .« . .o.veeeeeeeeeosoesossessosses 7
4 SYNEAX oo v v v v v oo et eesessssooeeeoosssssonsones 8
5 Built-In Predicates « v v v v e v v e e v eevoeoosoosossonsse 11
6 DIrectiveS. e o o e oo oo voesoeeoesocsossossoosessess 21
7 Typed Feature Structures. . . . o oo oo v vveeeenns 22
8 Tree Adjoining Grammars « . o o oo o oo oo oo ooeosoosesss 24
9 Range Concatenation GTrammars « « e e e o o o o s o 0000 oo 26
A Standard OperatorS . e oo e e oo oo oo oo ooeeecooooossss 27
B Copying ThisManual0vveeneeeeeiieeennnn. 28
Index of Built-Ins « ¢ v v v o e v vt e e v v v seesesoesssoonss 35

Concept Index v v v v v v i i it i i e e eeeeeeeannsens 37

Table of Contents

Introduction.....

Notational conventionscouvveeeeennns

1 Installation...

1.1 Obtaining DyALog ...
1.2 Supported Machines,

1.3 Installation

1.3.1 Configuring DyALogoo i
1.3.2 Installing DyALog. ...

2.1 Dyacc..........

2.2 Dyalog.........
2.3 Dyam2asm.....

2.4 DyALog executables...........

2.5 An example. ...

3.1 LPDA..........

3.2 Dynamic Programming
3.3 Compilation Process
3.3.1 From programs to LPDA
3.3.2 From LPDA to Abstract Machine Code
3.3.3 Emitting Ccode ...,

3.4 Execution......

4.1 Terms..........

4.1.1 Standard terms
4.1.2 Immediate unification

4.1.3 Operators

4.1.4 Feature Terms
4.1.5 Enumeration variables
4.1.6 Hilog termst

4.2 Programs......
4.2.1 Clauses. .

4.2.2 Definite Clause Grammarsouuieunenn....

4.2.3 Directives

ii

5 Built-In Predicates 11

5.1 Input / Outpub......oooueiii 11

5.1.1 Reading-in Programs 11

5.1.2 Input and Output of Terms 11

5.1.3 Character Input/Output............................ 12

514 Stream IO 12

5.1.5 Socket IO. 13

5.1.6 DEC-10 Prolog File IO 13

5.2 Arithmetic.o o 14

5.3 Comparison of Termsoo ... 15

5.4 Control.o 16

5.5 Error and Exception Handling 16

5.6 Information about the State of the Program 16

5.7 Meta-Logic. ..o 16

5.8 Modification of the Program............................... 18

5.9 Internal Database 18

5.10 All Solutionsovv et 18

5.11 Debugging ... 19

5.12 Execution Profiling 19

5.13 Definite Clause Grammarscooirierneenn. .. 19

5.14 Miscellaneousovni e 19

6 Directives.............iiiiiiiiiienn., 21

6.1 General Directives............c i 21

6.2 Compiler Directives.oiiii i, 21

6.3 Directive Files........ ... 21

7 Typed Feature Structures................. 22

8 Tree Adjoining Grammars................. 24

9 Range Concatenation Grammars........... 26

Appendix A Standard Operators............ 27

Appendix B Copying This Manual 28

B.1 GNU Free Documentation License......................... 28
B.1.1 ADDENDUM: How to use this License for your

documents 34

Index of Built-Ins............................ 35

Concept Indexcoiiiiiiiiiiinn... 37

iii

Introduction

This manual describes the system DyALog developped at the "Institut National de
Recherche en Informatique et Automatisme" [INRIA] in France. DyALog is used to compile
tabular executable from Logic Programs and Definite Clause Grammars. While working
for standard Prolog-like programs programs, DyALog is essentially helpful to build effi-
cient parsers for highly ambiguous and recursive grammars as found in Natural Language
Processing.

Indeed, tabular executables keeps traces of sub-computations in a table in order to get
computation sharing and loop detection. They also ensure computation completness and
give the possibility to test different evaluation strategies.

Notational conventions

When referring to keyboard characters, printing characters are written thus: a, while control
characters are written like this: C-a. Thus is the character you get by holding down
the key while you type c. Finally, the special control characters carriage-return,
line-feed and space are often abbreviated to (RET), and respectively.

When introducing a built-in predicate, we shall present its usage with a mode spec which
has the form name(arg, ..., arg) where each arg denotes how that argument should be
instantiated in goals, and has one of the following forms:

:ArgName The argument should in the program correspond to a goal.

+ArgName
The value of the argument should not be a variable.

-ArgName The value of argument should be a variable.

?ArgName
No constraint on this argument.

In the context of some directives, we shall need the following notation: Predicates in
Prolog are distinguished by their name and their arity. The notation name/arity is there-
fore used when it is necessary to refer to a predicate unambiguously; e.g. concatenate/3
specifies the predicate which is named “concatenate” and which takes 3 arguments.

More generaly, a predicate spec may be

name/arity
the elementary form

[elem_form,...]
a Prolog list of elementary forms

pred_specl,pred_spec2
a comma-separated list of predicate specifications

dcg(pred_spec)
a dcg predicate spec to refer to DCG predicates

Chapter 1: Installation 3

1 Installation

1.1 Obtaining DyALog

DyALog is available as a source package or as a Dbinary rpm at
ftp://ftp.inria.fr/INRIA/Projects/Atoll/Eric.Clergerie/DyALog/.

The WEB page http://atoll.inria.fr/"clerger/ proposes documentation as well
as an access to the distributions.

1.2 Supported Machines

The current version of DyALog only runs under Linux on i*86 architectures.

1.3 Installation

More detailled explanations are given in ‘INSTALL’ when installing from a source distribu-
tion.

1.3.1 Configuring DyALog

1. Run ‘./configure’ to generate the various Makefiles.

1.3.2 Installing DyALog
3. Type ‘make’ to build DyALog.

4. [optional] Type ‘make check’ to run the test suite. Perl modules Test::Cmd and
Test: :Simple are needed for this step.

5. Type ‘make install’ to export the program binaries and librairies.

[optional] Type ‘make clean’.

ftp://ftp.inria.fr/INRIA/Projects/Atoll/Eric.Clergerie/DyALog/
http://atoll.inria.fr/~clerger/

Chapter 2: Using DyALog 4

2 Using DyALog

Unlike most Logic Program evaluators, DyALog has no toplevel, being designed to compile
parsers.

The main command in the DyALog package is dyacc which is a PERL script used to
compile programs.

This command uses dyalog to compile Prolog files (.pl) into DyALog Assembler files
(.ma), and dyam2asm to convert .ma files into machine specific assembler (.s). The C
compiler gcc is then called to build object files (.o0) and link them.

2.1 Dyacc

The PERL script dyacc is a frontend to dyalog, dyam2asm, and gcc. An analysis of the
command line is done to correctly forward the options to the different commands.
To use dyacc, issue the shell command:
dyacc [options | files]... [-- cc-options-and-files]
where the possible options are
‘=c’ Compile or assemble the source files, but do not link. The compiler output is
an object file corresponding to each source file.

‘~dev’
To be used when DyALog is not installed (development mode)
‘~I path’
Add ‘path’ to the set of pathes used by dyalog to find files.
‘—ma’
Compile DyALog source files, but do not call dyam2asm or gcc.
By default, dyacc makes the object file name for a source file by replacing the
suffix .pl’ with ‘‘ma’. Use ‘-0’ to select another name.
‘-0 file’
Place output in ‘file’. This applies regardless to whatever sort of output dyacc
is producing.
‘-parse’

Set option -parse for dyalog

‘-pl-ext suffixe’
Specify an extra ‘suffixe’ for Prolog files

‘-save-temps’
Keep intermediate files (.ma and .s) but do not transmit the option to gcc.

Print (on standard error output) the commands executed to run the stages of
compilation.

Chapter 2:

Using DyALog 5

‘-x lang’
Specify explicitly the ‘language’ for the following input files (rather than choos-
ing a default based on the file name suffix). This option applies to all following
input files until the next ‘-x’ option. Possible values of ‘language’ are ‘pl’, ‘ma’,
and ‘none’ (to reset).
Mark the end of DyALog options. Everything on the right is passed to gcc and
not considered as a dyacc option.

2.2 Dyalog

To use DyAlLog, issue the shell command:

% dyalog -a [options | files]

where the possible options are

‘~version’

Version information

‘~f filename’

‘-1 path’

‘-parse’

Load the program file filename. ‘~f’ may be ommited when filename does not
start with ‘-’.

Add path to the search path list of DyALog. The same effect can be achieved
using the environment variable DYALOG_PGMPATH.

Compile grammar rules considering a parsing done from a database of tokens.

‘~use filename’

Add filename to the list of modules to be imported. The same effect can be
achieved using a directive require/1.

‘-res filename’

Extend the compiler by loading the resource file filename. The same effect can
be achieved using a directive resource/1.

The command dyalog also inherits all options available to DyAlog executables: they
should take place before -a.

2.3 Dyam2asm

This command is used to convert DyALog Assembler files into machine assembler.

Its syntax is

% dyam2asm [option...] input_file

‘~help’

Show some help and exit

‘~0 filename’

‘—version’

Name the output file (otherwise use the standard output)

Print version number and exit

Chapter 2: Using DyALog 6

2.4 DyALog executables

All DyALog executables accept the following options:
%> <dyalog_exe> [options | files] [-a args]

‘~h’ Display some help and exit.

‘~db filename’
Load ‘filename’ as a database. ‘-db’ may be ommited when ‘filename’ does
not start with ‘- .

‘~forest’ Display the shared forest at the end of the execution
‘~fcount’ Display the number of possible derivations per answer.

‘-slex string’
Use string as the string to parse

‘~flex file’
Use file as a character file to parse

‘~v kind’ Display trace information relative to kind, which should belong to dyam, share,
index, or all.

‘-a args’ All args are collected in a Prolog list of symbols and accessible by the executable
through the builtin argv/1.

By default, a filename on the command line is loaded as a database.

2.5 An example

We illustrate the use of dyalog on a small recursive example that will loop with standard
Prolog systems.

% cat pgm.pl

q(f(£(a))).
q(X) - q(f(X)).
7-q(X). % the query must be inside the file

% dyacc pgm.pl -o pgm
% ./pgnm
Answer:

X = £f(£f(a))
Answer:

X = f(a)
Answer:

X =a

Chapter 3: Behind the screen 7

3 Behind the screen

DyALog uses

1. Logical Push-Down Automata [LPDA] as operational devices to describe various reso-
lution and parsing strategies for logic programs

2. Dynamic Programming techniques to break LPDA computations in elementary sub-
derivations that are combinable and sufficiently compact to be tabulable.

This chapter presents briefly the theoretical background behind DyALog and some in-
ternal details about its implementation.

3.1 LPDA

Logical Push-Down Automata are a natural extension of the Push-Down Automata. They
may be non-deterministic. The main difference is the use of unification for transition ap-
plication.

We consider three basic kinds of transitions:

1. Push
2. Swap
3. Pop

3.2 Dynamic Programming

3.3 Compilation Process

Given a set of clauses (and eventually a query), the compilation process builds some code
of an Abstract Machine and a set of objects that encapsulate this code. The resulting code
is either emulated or emitted toward a C file.

3.3.1 From programs to LPDA
3.3.2 From LPDA to Abstract Machine Code
3.3.3 Emitting C code

The emitting phase emits the compiled code to a C file. Futrhermore, some additional code
needed to build terms, objects and to run initialization is also emitted.

3.4 Execution

Chapter 4: Syntax 8

4 Syntax

DyALog tries to comply with the standard syntax of Prolog, with extensions to handle
hilog terms and typed features terms. On the contrary, the DyALog reader may miss some
obscure points of the standard.

4.1 Terms

4.1.1 Standard terms

A standard term is either a simple term (an integer, a character, a symbol or a variable as
defined in most Prolog) or a term f(t1,...,tN) where ti is a term. Note that floats are
not yet implemented and that chars are not implemented as a subset of integers (but as a

proper type).
4.1.2 Immediate unification

DyALog performs immediate unification at reading time when encountering infix operator
::/2. Immediate unification is generally used to assign in a single step a variable for a
whole structure and variables for its sub-structures.

For example:

p(X::£(Y,Z)) :- check(Y),check(Z),q(X).
is a shortcut for

p(£(Y,2)) :- check(Y),check(Z),q(£(Y,Z)).

Mutiple immediate unification may take place at the same time, which is sometimes
usefull in conjonction with feature terms.

4.1.3 Operators

Infix, prefix or postfix operators with precedence are allowed in DyALog and are just syn-
tactic sugar for standard Prolog term. For instance t+q is equivalent to +(t,q).

The declaration of new operators is possible through the usual directive op/3.

4.1.4 Feature Terms

It is possible to associate to a symbol (say employee) a list of features (say
[name, job,salary]). When building a term based on employee, it is not neces-
sary to assign explicitely and in order a value for all its features because the miss-
ing values will be filled by new anonymous variables. For instance, the feature term
employee{salary=>6000,name=>john} is equivalent to the term employee(john,_,5000).
Note the use of enclosing {} instead of enclosing () to mark feature terms.

To associate a feature table to a symbol, use the directive features/2.
:-features(employee, [name, job,salary]) .

It is also possible to use Typed Feature Structure, following the same syntax.

Chapter 4: Syntax 9

4.1.5 Enumeration variables

DyALog provides Enumeration Variables, i.e. variables that may take their values from some
defined enumeration. For instance, the term X: :tense[present,past] denotes a variable
X with value in the sub-enumeration [present,past] of some user-defined enumeration
tense. Note the use of enclosing [] instead of enclosing ().

To associate an enumeration to a symbole, use the directive finite_set/2.
:-finite_set(tense, [present,past,futur]).
It is also possible to define sub-enumeration using the directive subset/2
:-finite_set(letter, [a,b,c,d,e,f,g,h,i,j,k,1,m,n,0,p,
q,r,s,t,u,v,w,x,y,Zz 1).
:-subset (voyel,letter[a,e,i,o,u,y])

Enumeration are restricted to at most 30 elements. These elements should be ground
objects. Enumeration variable may be unified with variables, enumeration variables based
on the same enumeration and with elements of their enumeration.

4.1.6 Hilog terms
Hilog terms are an extension found in some Prolog evaluators (XSB among others) that
gives a flavor of (pseudo) higher order very practical to build meta-predicates or closures.

The key idea is to consider that a sequence t (t1,..,tN) (with a between the
terms) is equivalent to apply(t,t1,...,tN).

The middle space can be removed when there is no ambiguity, for instance when t is an
integer, a char, a variable, a compound term or a symbol declared as being hilog.

In case of ambiguity between an operator-based expression or an hilog expression, the
operator-based expression will be chosen. For instance, - (a+b) represents the term - (a+b)
and not apply(-,a+b).

One can force the hilog interpretation of a symbol by using the directive hilog/1.

The following program illustrate the use of hilog terms to build meta-predicates.

closure(R) (X,Y) :- R(X,Y).
closure(R) (X,Y) :- R(X,Z),closure(R)(Z,Y).

:~hilog(x).
r(a,b).
r(b,c).

4.2 Programs

4.2.1 Clauses

4.2.2 Definite Clause Grammars

A clause of a Definite Clause Grammar is introduced with the binary predicate -—>/2 and
closed by a dot. Lists in position of predicates in the clause denote terminals to be scanned.
Scanning is done either from a Prolog list or from a token database (implementing a Finite
State Automata).

The following program implements reverse with a Definite Clause Grammar.

Chapter 4: Syntax 10

reverse(X,Y) :- phrase(rev(Y),X,[]).
rev([]l) --> [].
rev([X|Y]) -—> rev(Y), [X].

4.2.3 Directives

Directive clauses are conjunctions of directives introduced par the unary predicate :-/1
and close by a dot mark.

:-include(’foo.pl’),op(300,xfx, [hello]).

Chapter 5: Built-In Predicates 11

5 Built-In Predicates

Not every standard built-in predicate found in most Prolog evaluators are avaliable in
DyALog and will not be because DyALog is mostly devoted to build parsers.

5.1 Input / Output

Input / Output in DyALog is done through streams that can associated either to a file, a
string or a device.

A stream can be connected to a filename or UNIX file descriptor for input or output by
calling the predicate open/3.

The possible formats of a stream are:
n A stream connected to some file. n is an integer.

symbol where symbol has been aliased to a stream using add_stream_alias/2. Note
that user_input, user_output, and user_error are by default aliased to the
UNIX stdin, stdout, and stderr streams.

Shell-like expansions of filenames is provided.

5.1.1 Reading-in Programs

None.

5.1.2 Input and Output of Terms

read(?Term)

read (+Stream, ?Term)
The next term, delimited by a full-stop (i.e. a ., possibly followed by layout
text), is read from Stream and is unified with Term. The syntax of the term
must agree with current operator declarations. If a call read(Stream, Term)
causes the end of Stream to be reached, Term is unified with the term eof.
Further calls to read/2 for the same stream will then fail, unless the stream is
connected to the terminal.

read_term(?Term,+Vars)

read_term(+Stream, ?Term,+Vars)
Same as read/1-2 with a third argument +Vars. This argument is unified with
a list of Name=Var pairs, where each Name is an atom indicating the name of
a non-anonymous variable in the term, and Var is the corresponding variable.

write(?Term)

write(+Stream, ?Term)
The term Term is written onto Stream according to current operator declara-
tions.

writeln(?Term)
writeln(+Stream, ?Term)
Same as write/1-2 except that a newline is send,

Chapter 5: Built-In Predicates 12

display(?Term)
The term Term is displayed onto the standard output stream (which is not nec-
essarily the current output stream) in standard parenthesized prefix notation.

writeq(?Term)

writeq(+Stream, ?Term)
Similar to write(Stream,Term), but the names of atoms and functors are
quoted where necessary to make the result acceptable as input to read/2, pro-
vided the same operator declarations are in effect.

5.1.3 Character Input/Output

get_char(?C)

get_char (+Stream,?C)
C is the next character read from Stream (or by default, from stream user_
input).

put_char (+C)
put_char (+Stream,+C)
Character C is output onto Stream (or by default, onto stream user_output).

5.1.4 Stream IO

open(+FileName,+Mode, -Stream)
If FileName is a valid file name, the file is opened in mode Mode (invoking the
UNIX function fopen) and the resulting stream is unified with Stream. Mode

is one of:
read Open the file for input.
write Open the file for output. The file is created if it does not already

exist, the file will otherwise be truncated.

append Open the file for output. The file is created if it does not already
exist, the file will otherwise be appended to.

close(+Stream)
If Stream is a stream the stream is closed.

absolute_file_name(+RelativeName, ?AbsoluteName)
This predicate is used by all predicates that refer to filenames for resolving
these. The argument RelativeName is interpreted as a filename according to
the filename syntax rules (see Section 5.1 [Input / Output], page 11). If the
specified file is found (possibly with a ‘. pl’ extension), AbsoluteName is unified
with the full path name of this file.

current_input (?Stream)
Unify Stream with the current input stream. The current input stream is also
accessed by the C variable SP_curin.

current_output (?Stream)
Unify Stream with the current output stream. The current output stream is
also accessed by the C variable SP_curout.

Chapter 5: Built-In Predicates 13

set_input (+Stream)
Set the current input stream to Stream.

set_output (+Stream)
Set the current output stream to Stream.

flush_output
flush_output (+Stream)
Flush all internally buffered characters for Stream to the operating system.

from_alias_to_stream(+Alias,?Stream)
Unify Stream with the stream aliased to Alias.

add_stream_alias(+Stream_or_Alias,+Alias)
Alias the stream given by Stream_or_Alias with Alias.

5.1.5 Socket 10

None.

5.1.6 DEC-10 Prolog File 10
The DEC-10 prolog 10 predicates are available with the library ‘dec10’:

see(+File)
File File becomes the current input stream. File may be a stream previously
opened by see/1 or a filename. If it is a filename, the following action is taken:
If there is a stream opened by see/1 associated with the same file already, then
it becomes the current input stream. Otherwise, the file File is opened for input
and made the current input stream.

seeing(?FileName)
FileName is unified with the name of the current input file, if it was opened by
see/1, with the current input stream, if it is not user_input, otherwise with

user.
seen Closes the current input stream, and resets it to user_input.
tell(+File)

File File becomes the current output stream. File may be a stream previously
opened by tell/1 or a filename. If it is a filename, the following action is taken:
If there is a stream opened by tell/1 associated with the same file already,
then it becomes the current output stream. Otherwise, the file File is opened
for output and made the current output stream.

telling(?FileName)
FileName is unified with the name of the current output file, if it was opened
by tell/1, with the current output stream, if it is not user_output, otherwise
with user.

told Closes the current output stream, and resets it to user_output.

Chapter 5: Built-In Predicates 14

5.2 Arithmetic

Arithmetic is performed by built-in predicates which take as arguments arithmetic expres-
sions and evaluate them. An arithmetic expression is a term built from numbers, variables,
and functors that represent arithmetic functions. At the time of evaluation, each variable
in an arithmetic expression must be bound to a non-variable expression. An expression
evaluates to a number, which may be an integer.

Only certain functors are permitted in an arithmetic expression. These are listed below,
together with an indication of the functions they represent. X and Y are assumed to be
arithmetic expressions. Unless stated otherwise, the arguments of an expression may be
any numbers.

+(X) The value is X.

-X The value is the negative of X.

X+Y The value is the sum of X and Y.

X-Y The value is the difference of X and Y.

X*xY The value is the product of X and Y.

X//Y The value is the integer quotient of X and Y.

Xmod Y The value is the integer remainder after dividing X by Y, i.e. integer(X)-
integer(Y)*(X//Y).

X/\Y The value is the bitwise conjunction of the integers X and Y.

X\/Y The value is the bitwise disjunction of the integers X and Y.

X#Y The value is the bitwise exclusive or of the integers X and Y.

\(X) The value is the bitwise negation of the integer X.

X<<Y The value is the integer X shifted left by Y places.

X>>Y The value is the integer X shifted right by Y places.

abs (X) The value is the absolute value of X.
min(X,Y) The value is the lesser value of X and Y.
max(X,Y) The value is the greater value of X and Y.

Arithmetic expressions, as described above, are just data structures. If you want one
evaluated you must pass it as an argument to one of the built-in predicates listed below.
Note that it only evaluates one of its arguments, whereas all the comparison predicates
evaluate both of theirs. In the following, X and Y stand for arithmetic expressions, and Z
for some term.

Z is X X, which must be an arithmetic expression, is evaluated and the result is unified
with Z.
X =:= The numeric values of X and Y are equal.

X=\=Y The numeric values of X and Y are not equal.

X<y The numeric value of X is less than the numeric value of Y.

Chapter 5: Built-In Predicates 15

X>Y The numeric value of X is greater than the numeric value of Y.
X=<Y The numeric value of X is less than or equal to the numeric value of Y.
X>=Y The numeric value of X is greater than or equal to the numeric value of Y.

5.3 Comparison of Terms

These built-in predicates are meta-logical. They treat uninstantiated variables as objects
with values which may be compared, and they never instantiate those variables. They
should not be used when what you really want is arithmetic comparison (see Section 5.2
[Arithmetic], page 14) or unification.
The predicates make reference to a standard total ordering of terms, which is as follows:

e Variables, in a standard order (not related to the names of variables).

e Floats, in numeric order (e.g. -1.0 is put before 1.0).

e Integers, in numeric order (e.g. -1 is put before 1).

e Atoms, in alphabetical (i.e. character code) order.

e Compound terms, ordered first by arity, then by the name of the principal functor, then

by the arguments (in left-to-right order). Recall that lists are equivalent to compound
terms with principal functor . /2.

These are the basic predicates for comparison of arbitrary terms:

Terml == Term2

Tests if the terms currently instantiating Term1 and Term2 are literally iden-
tical (in particular, variables in equivalent positions in the two terms must be
identical). For example, the query

%>dyalog -s "7-X==Y. "
fails (answers ‘no’) because X and Y are distinct uninstantiated variables. How-
ever, the query

%>dyalog -s "7-X=Y,X==Y. "

Answer : Y =X
succeeds because the first goal unifies the two variables (see Section 5.14 [Mis-
cellaneous|, page 19).

Term1l \== Term2
Tests if the terms currently instantiating Terml and TermZ2 are not literally
identical.

Terml @< Term2
Term Terml is before term Term?2 in the standard order.

Terml ©@> Term?2
Term Terml is after term Term2 in the standard order.

Terml @=< Term2
Term Terml is not after term Term2 in the standard order.

Terml ©@>= Term2
Term Terml is not before term Term?2 in the standard order.

Chapter 5: Built-In Predicates 16

5.4 Control

+P , +Q Prove P and if it succeeds, then prove Q.
+P ; +Q Prove P or Q.

\+ +Guard
If the guard Guard has a solution, fail, otherwise succeed.

+Guard -> +@Q ; +R
+(@ is called for every possible solutions of Guard. +R is only called if Guard
has no solutions.

+Guard -> +(
Analogous to +Guard -> +(@;fail

true Always succeed.
fail Always fail.
wait (+Goal)

Wait the full completion of the evaluation of Goal before evaluating its contin-
uation. Still very experimentall

The library ‘call’ provide the additionnal predicate:

call(Goal)
If Goal is instantiated to a term which would be acceptable as the body of a
clause, then the goal call(Term) is executed exactly as if that term appeared
textually in its place. There are some restrictions on Goal.

5.5 Error and Exception Handling

DyALog treats very poorly errors. There is only one predicate to raise errors (but no way
to catch them).

error (Error)
Display Error and fail. There is no exit of the program.

5.6 Information about the State of the Program

None.

5.7 Meta-Logic

The predicates in this section are meta-logical and perform operations that require reasoning
about the current instantiation of terms or decomposing terms into their constituents. Such
operations cannot be expressed using predicate definitions with a finite number of clauses.

var(?X) Tests whether X is a variable

nonvar (?X)
Tests whether X is not a variable. This is the opposite of var/1.

ground (?X)
Tests whether X is free of unbound variables.

Chapter 5: Built-In Predicates 17

atom(?X) Checks that X is an atom.

integer (7X)
Checks that X is an integer.

number (7X)
Checks that X is a number.

atomic(?X)
Checks that X is an atom or number.

simple(7X)
Checks that X is a variable, an atom or a number.

compound (7X)
Checks that X is currently a term of arity > 0 i.e. a list or a structure.

functor (+Term, ?Name, 7Arity)

functor(?Term,+Name,+Arity)
The principal functor of term Term has name Name and arity Arity, where
Name is either an atom or, provided Arity is 0, an integer. Initially, either Term
must be instantiated, or Name and Arity must be instantiated to, respectively,
either an atom and an integer in [0..256) or an atomic term and 0. In the case
where Term is initially uninstantiated, the result of the call is to instantiate
Term to the most general term having the principal functor indicated.

arg(+ArghNo,+Term, 7Arg)
Initially, ArgNo must be instantiated to a positive integer and Term to a com-
pound term. The result of the call is to unify Arg with the argument ArgNo
of term Term. (The arguments are numbered from 1 upwards.)

+Term =.. 7List

?Term +List
List is a list whose head is the atom corresponding to the principal functor of
Term, and whose tail is a list of the arguments of Term. e.g.

%>dyalog -s "?7-product(0, n, n-1) =.. L. "
Answer : L = [product,0,n,n - 1]

%>dyalog -s "?-n-1 =.. L. "

Answer : L = [-,n,1]

%>dyalog -s "7-product =.. L. "

Answer : L = [product]

If Term is uninstantiated, then List must be instantiated either to a list of
determinate length whose head is an atom, or to a list of length 1 whose head
is a number.

name (+Const, ?CharList)
name (?Const,+CharList)
If Const is an atom or number then CharList is a list of the character codes of
the characters comprising the name of Const. e.g.
%>dyalog -s "?-name(product,L). "
Answer : L = [0°p,0°r,0’0,0°d,0’u,0’c,0°t]

Chapter 5: Built-In Predicates 18

%>dyalog -s "?7-name(1976,L). "

Answer : L = [0°1,0°9,0°7,0°6]
If Const is uninstantiated, CharList must be instantiated to a list of characters.
If CharList can be interpreted as a number, Const is unified with that number,
otherwise with the atom whose name is CharList.

atom_chars (+Const, ?CharList)
atom_chars(?Const,+CharList)
The same as name (Const,CharList), but Const is constrained to be an atom.

number_chars (+Const, ?CharList)
number_chars(?Const,+CharList)
The same as name (Const, CharList), but Const is constrained to be a number.

term_subsumer (+Terml, +Term2, -General)
Binds General to the most specific term that generalizes Terml and Term?2.
This process is sometimes called anti-unification, as it is the dual of unification.

%>dyalog -s "?- term_subsumer (f(g(1,h(_))), £(g(_,h(1))), T).

Answer : T = f(g(B__2,h(A__2)))

%>dyalog -s "7- term_subsumer (f(1+2,2+1), f(3+4,4+3), T). "
Answer : T = £(B__2 + C__2,C__2 + B__2)

5.8 Modification of the Program

None.

5.9 Internal Database

The predicates described in this section store arbitrary terms in the database without
interfering with the clauses which make up the program.

record(+Term)
An entry associated with Term is added to the internal database.

recorded (+Term)
The internal database is searched for terms unifiable with Term.

erase(+Term)
Any entry in the internal database unifiable with Term is erased.

5.10 All Solutions

The predicates described in this section works on the whole set of solutions that may be
computed for a goal.

bestof (X, Generator,Y Test)
Test must denote a total binary relation defined as a guard and is used to
compute the best X element for this relation in those generated by Generator.
X is unified with this best element.

III

Chapter 5: Built-In Predicates 19

%>dyalog -s "?-bestof (X,domain(X,[1,-2,3]),Y"(X<Y)). "
Answer : X = -2

iterate(Iterator, Generator)
Iterator must be either an elementary iterator or a list of elementary itera-
tor. An elementary iterator New~ (Init,X~01d ~Updater) computes the iterate
value of Init by repeated application of Updater to each value X generated by
Generator.

%h>dyalog -s "7-iterate(Y" (Y is 0,X"01d" (Y is X+01d)),domain(X, [1,2,3]1)). "

Answer : Y = 6
Note that iterate doesn’t fail if there is no answer Generator but binds New
variables to Init values.

group_by (Generator, Grouping,Collector)
Collector of the form New~Current”(01d " Updater,Init) almagates values
Current build by Generator

Note that group_by fails if Generator has no answer.

5.11 Debugging

None

5.12 Execution Profiling

None

5.13 Definite Clause Grammars

Definite Clause Grammars are available in DyALog using the standard notations,

Terminals to be recognized may be provided either by a PROLOG list or a set of tokens.
A token has the form ’C’ (Left,T,Right) and means that a terminal L is present between
the markers Left and Right. Anything may be used as markers, may integers are usually
employed.

phrase(:Phrase, 7List, PRemainder)

phrase(:Phrase, 7Left, 7PRight)
According to the current grammar rules, Phrase is found between List and
Remainder for the first form and the markers Left and Right for the second
form.

5.14 Miscellaneous
?X = ?Y Defined as if by the clause Z=Z.; i.e. X and Y are unified.

length(?List, ?Length)
If List is instantiated to a list of determinate length, then Length will be unified
with this length.

If List is of indeterminate length and Length is instantiated to an integer, then
List will be unified with a list of length Length. The list elements are unique
variables.

Chapter 5: Built-In Predicates 20

If Length is unbound then Length will be unified with all possible lengths of
List.

copy_term(?Term, ?CopyOfTerm)
CopyOfTerm is a renaming of Term, such that brand new variables have been
substituted for all variables in Term.

argv(7Args)
Args is unified with a list of atoms of the program arguments supplied after the
‘-a’ option on the command line.

cd Change the current working directory to the home directory.

shell (+Command, -Status)
Pass Command to a new UNIX shell named in the Unix environment variable
$SHELL for execution. Unify Status with the returned status of Command.

system(+Command, -Status)
Pass Command to a new UNIX sh process for execution. Unify Status with
the returned status of Command.

mktemp (+Template, -FileName)
Interface to the C-function mktemp(3). A unique file name is created and unified
with FileName. Template should contain a file name with six trailing Xs. The
file name is that template with the six Xs replaced with a letter and the process
id.

access (+Path,+Mode)
Tests if Mode is the accessability of Path as in the C-function access(2).

getwd (?Path)
Unify Path with the atom representation of the current working directory.

getenv (+Name, ?Value)
Unify Value with the atom representation of the value of the environment vari-
able given by Name.

gensym(-Id)
Unify Id with a fresh integer.

domain(x?X,+List)
A built-in oriented version of member/2.

Chapter 6: Directives 21

6 Directives

Directives are introduced by :-/1 and are used to extend the compiler or the reader /printer.

Unary directives such as require/1 are prefix operators with high precedence, allowing
to write for instance:

:-require ’foo.pl’,’bar.pl’.

6.1 General Directives
General directives are used to govern the parser and reader.

op(+Prec,+Kind,+0p_List)
Declare all symbols in Op_List as operators of precedence Prec and nature
Kind.

hilog +Symbol_List
Declare all symbols in Symbol_List as hilog symbols.

features (+Symbol_List,+Feature_list)
Declare all symbols in Symbol_List as feature functor with associated feature
list Feature_list. Element of Feature_list should be symbols.

6.2 Compiler Directives

include +Filename_List

require +Filename_List

resource +Filename_List

mode (+Pred_Spec,+Mode_Pattern)
dcg_mode (+Pred_Spec,+Mode_Pattern,+Left_Mode_Pattern,+Right_Mode_Pattern)
extensional +Pred_Spec

prolog +Pred_Spec

rec_prolog +Pred_Spec

lco +Pred_Spec

parse_mode Mode

cmode (Mode)

xcompiler(Clause)

bmg_stacks +Symbol_List
bmg_island(+Island,+Island_Stacks)
bmg_pushable (+Pred_Spec,+Stack_List)

6.3 Directive Files

Chapter 7: Typed Feature Structures 22

7 Typed Feature Structures

Typed Feature Structures a la Carpenter are available in DyALog (in an experiemental
way). They extend standard Feature Structures by considering that (1) feature structure
functors are types in some type hierarchy, (2) features are inherited from type to subtype
and (3) feature values must satisfy type constraints.

For instance, ‘list.def’ specify a small hierarchy for TFS corresponding to lists.

bot sub [atom,list].
atom sub [].
list sub [e_list,ne_list].
e_list sub [].
ne_list sub [] intro [hd:atom,tl:list].

This description says that bot is the most general type with subtypes atom and list.
Similarly, 1ist has two subtypes e_list (for empty list) and ne_list (for non empty list).
ne_list introduces two new features, namely hd and t1 whose most general type should
be respectively atom and list.

The set of features associated with type is given by all features introduced by type and
its super types. A feature may be introduced again by type with a more specific type.

Any tfs built on type may be instanciated to a new tfs built on a subtype of type. For
instance, 1list{} generalizes both e_list{} and ne_list{hd=>atom{},t1=>1ist{}}.

Subsumption checking as well as unification have therefore to be extended to handle type
shifting. This is done by linking executable with a C library generated from the description
file.

Actually, the generated C library need also to be dl-opened by the compiler to extend
program reading and performs some immediate unifications.

Let suppose we want to use the following implementation of append:

%> cat tfs_append.pl
append(e_list{}, Y::list{}, Y).

append(A::t1=>X,Y::1list{}, B::t1l=>Z) :-
A .> hd .= B.> hd,
append(X,Y,Z) .

7-X=tl=>tl=>e_list{},Y=t1l=>_,append(X,Y,Z).

In file ‘tfs_append.pl’, Y::1list{} denotes immediate unification performed by the
compiler between Y and list{}. Notation t1=>X introduces the most general tfs with
feature t1 bound to X, i.e. ne_list{hd=>atom{},t1=>X::1ist{}}. Expression A .> hd .=
B .> hd is an alternate way to specify the unifiability of values given as feature pathes: here,
we unify value of feature hd of tfs A with value of feature hd of tfs B.

To compile ‘tfs_append.pl’, we first need to generate the C library from ‘list.def’.

%> tfs2lib list.def

The resulting library is called ‘liblist.so.0’. It will used by the compiler to be able
to correctly read ‘tfs_append.pl’ and linked with the executable to extend unification and
subsumption.

Chapter 7: Typed Feature Structures 23

%> dyacc -tfs list tfs_append.pl -o tfs_append

Both the compiler (dyalog) and the executable (tfs_append) should be able to locate
library ‘1iblist.so.0’, either by moving the library in some known library directory or by
setting, for instance, the environment variable LD_LIBRARY_PATH.

An alternate way is to use the option -libtool <libtoo_pgm> for both tfs21ib and
dyacc.

%> tfs2lib list.def -libtool libtool
%> dyacc -tfs list -libtool libtool tfs_append.pl -o tfs_append

The library is now called ‘1iblist.la’ and is actually a shell wrapper to the true library.

Chapter 8: Tree Adjoining Grammars 24

8 Tree Adjoining Grammars

DyAlog can compile Feature Tree Adjoining Grammars [FTAGs]. This extension is based
on ftp://ftp.inria.fr/INRIA/Projects/Atoll/Eric.Clergerie/SD2SA.ps.gz. TAGs
are compiled into (meta) transitions of a 2-stack automaton, which are then compiled into
DyALog objects and application functions for a run-time tabular evaluation.

For instance, the following grammar defines the langage a"nb"nec™nd"n

tree s("e").
auxtree —s("a“ ,S("b" LS, "C") s "d") .
The first tree of this program is an initial tree reading the terminal "e" and allowing an
adjonction on the node s.

The second tree is an auxiliary tree. Its foot node is the one marked by * and adjonction
is not allowd on the node marked by -.

Mandatory adjonction may be marked by prefixing a node by ++.
TAG non terminals may be called from a Prolog program using predicate tag_phrase/3.
Nodes may be named and decorated with a pair of top and bot attributes.

Following the XTAG architecture, trees may be named and grouped in set of families.
Each tree may have an anchor node, a distinguished node marked <>. Tree are related to
lemma

The following is a fragment from a small french FTAG for verb donne (gives).

%% Specify wich parameter of trees in tnlpn2 may be instanciated
%% with information from the lexicon
:-tag_anchor{ name => tnlpn2,

coanchors => [p_2],

equations => [[A]~ (top=np{ restr => A } at np_2),

[B] ~ (top=np{ restr => B } at np_0)
]
1.

%% Define tree tnlpn2 in family tnlpn2
%% anchored on a verb
tag_tree{ name => tnlpn2,
family => tnlpn2,
tree=> tree
bot=s{mode => X2, inv => (-)}
at s(
id=np_0
and top=np{num => X0, pers => X1, wh => (=)}
at np,
top=vp{num => X0, pers => X1, mode => X2}
and bot=vp{mode => X3, num => X6, pers => X7}
at vp(
bot=v{mode => X3, num => X6, pers => X7}
at <> v,

ftp://ftp.inria.fr/INRIA/Projects/Atoll/Eric.Clergerie/SD2SA.ps.gz

Chapter 8: Tree Adjoining Grammars 25

np,
pp(
id=p_2 at p,
id=np_2 at np
)

%% Define lemma entry in the lexicon for verb DONNER (to give)
tag_lemma (’*DONNER*’ ,v,
tag_anchor{ name=>tnlpn2,
coanchors=>[p_2=],
equations=>[top = np{ restr=>plushum } at np_O,
top = np{ restr=>plushum } at np_2]}

%% Define morph entry in the lexicon for verb donne (gives)
tag_lexicon(donne, ’*DONNER*’, v,
v{ mode => mode[ind, subj], num => sing }).

Modulation may be applied on TAG non terminals.

Chapter 9: Range Concatenation Grammars 26

9 Range Concatenation Grammars

Range Concatenation Grammars is a formalism introduced by Pierre Boullier. They provide
an elegant way to specify non-contiguous or even overlapping constituant by expressing
constraints on sub-ranges of the input string.

For instance, the following grammar defines the language a~nb"nc"nd"n:

s (X@Yez) --> a (X,Y,2).
a ("a"ex,"b"ey,"c"ez) --> a (X,Y,2).
a (nu , nn R nn) -=> true.

Note that the range arguments are separated from their predicate by a whitespace (Hilog
notation).

RCG non terminals may be called from a logic program using rcg_phrase/1, for instance
rcg_phrase(s (0:N).

RCG should be compiled with option -rcg to distinguish them from DCG.

RCG may be compiled with or without option -parse, depending if the grammar is to
be used to parse from PROLOG lists or token databases.

RCG non terminals may be decorated with attributes and {} may be used to escape to
PROLOG. For instance, the previous program may be rewritten to count.

s(N) (Xeyez) --> a(N) (X,Y,Z).
a(N) ("a"eX,"b"@Y,"c"ez) --> a(M) (X,Y,2), {N is M+1}.
a(o) (u n s nn s " u) --> true.

A RCG predicate is characterized by its Prolog arity and its range arity. For instance,
non-terminal a(N) (X,Y,Z) in the previous program formelly corresponds to predicate
rcg(a/1,3).

Directives prolog/1 or rec_prolog/1 apply on RCG predicates to change their tabula-
tion status.

Directive mode/2 also applies to alter their modulation status. The modulation only acts
on the PROLOG arguments.

For instance, to be bottom up on the counting argument, use
:-mode ([rcg(s/1,1) ,rcg(a/1.3)]1,+(-)).

Appendix A: Standard Operators

Appendix A Standard Operators

:—op(
:-op(
:-op(
:-op(
:-op(
:—op(
:-op (
:-op(
:-op(
:—op(
:—op(
:-op(
:-op (
:—op (
:—op(
:—op(

1200,
1200,
1100,
1050,
1000,
900,
700,
600,
500,
500,
400,
300,
200,
900,
700,
700,

xfx,
fx,
xfy,
xfy,
xfy,
ty,
xfx,
xfy,
yix,
fx,
yfx,
xfx,
xfy,
xfy,
xf ,
xfx,

[C:=),(=—>)1).
[C:=), (7)1).

(01).

[->]1).

(’,°1).
[\+,spy,nospy]).
[=,is,=..,==,0<,0>,0=<,0>=,
[:]1).

[+,-,\\/,/\\1).
[-,+1).
[*x,/,//,<<,>>,div]).
[mod]).

-1).

(&l).

(71).

[isagg]).

\=,

b

b

27

<,>=]).

b

Appendix B: Copying This Manual 28

Appendix B Copying This Manual

B.1 GNU Free Documentation License
Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

Appendix B: Copying This Manual 29

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include PNG, XCF and
JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix B: Copying This Manual 30

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix B: Copying This Manual 31

o

N.

O.

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix B: Copying This Manual 32

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix B: Copying This Manual 33

7. AGGREGATION WITH INDEPENDENT WORKS

10.

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix B: Copying This Manual 34

B.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Appendix B: Index of Built-Ins

Index of Built-Ins

#

/2, bitwise exclusive or.................. 14
*
* /2, multiplication 14
+
+ /1, identity 14
+ /2, addition. ... 14
9
,/2, conjunctioniiiiaaaa. 16
-/1,negation.................... 14
- /2, subtraction..........., 14
->/2;/2, if thenelse..................... 16
> /2,if then.......... 16
// /2, integer division 14
/\ /2, bitwise conjunction................. 14
)
;/2, disjunction ...l 16
<
< /2, arithmetic lessthan.................. 14
<< /2, leftshift............ ... 14
/2, unification........................... 19
=2, univ. .. 17
=:= /2, arithmeticequal 14
=< /2, arithmetic lessor equal............. 15
== /2, equalityof terms.................... 15
=\= /2, arithmetic not equal 14
>
> /2, arithmetic greater than 15
>= /2, arithmetic greater or equal 15

>> /2, right shift.......................... 14

35
@
@< /2, termlessthan....................... 15
@=< /2, termlessorequal 15
© /2, term greater than.................... 15
@>= /2, term greaterorequal............... 15
\
\ /1, bitwise negation...................... 14
\+ /1, not provable......................... 16
\/ /2, bitwise disjunction................. 14
\== /2, inequality of terms................. 15
A
abs/1, absolutevalue 14
absolute_file_name/2....................... 12
ACCESS/ 2. i 20
add_stream_alias/2......................... 13
ATE/ 3 17
argv/l. ... 20
atom/1... ... 17
atom_chars/2 ... 18
atomic/l. ... 17
B
bestof/3. . . . 18
bmg_island/2 (directive)................... 21
bmg_pushable/2 (directive) 21
bmg_stacks/1 (directive) 21
C
call/ L. 16
CA/0 e 20
close/ L. oo 12
cmode/1 (directive) 21
compound/1 ... 17
Copy_term/2 i 20
current_input/1.......... 12
current_output/1......... 12
D
dcg_mode/4 (directive) 21
display/1 i 12
domain/2.............l 20
E
erase/l... ... 18
error/l. .. 16

Appendix B: Index of Built-Ins

F

Fail/0. .
features/2 (directive)
flush_output/0.............oviiiioi...
flush_output/1...... ...,
from_alias_to_stream/2
functor/3

G

gensym/1..
getwd/1.
ground/1......
group_by/3 ...

H

hilog/1 (directive)

I

include/1 (directive)
integer/1
18/
iterate/2

L

lco/1 (directive)covviiinonon...
length/2. . ..o

M

max/2, maximum value
min/2, minimum value
MREempP/2. ..ot
mod/2, integer remainder
mode/2 (directive)uoun...

number/1.
number_chars/2 ...,

@)

op/3 (directive),
OPEN/3 . ottt

36
P
parse_mode/1 (directive)................... 21
phrase/3.... 19
prolog/1 (directive) 21
read/l. ... 11
read/2. 11
read_term/2 11
read_term/3 11
rec_prolog/1 (directive)................... 21
recorded/1 18
require/1 (directive) 21
resource/1 (directive) 21
see/1 (decl0 library) 13
seeing/1 (dec10 library) 13
seen/0 (dec10 library) 13
set_input/1 il 13
set_output/1 13
shell/2 (unix/1 option) 20
simple/1. 17
System/2. 20
T
tell/1 (decl1O library) 13
telling/1 (decl10 library) 13
term_subsumer/3 18
t0ld/0 (dec10 library) 13
true/0 . 16
var/l .. 16
walt/1. .. . 16
write/1.. 11
Write/2. . o 11
writeq/l. ... 12
Writeq/2........ .. 12
X
xcompiler/1 (directive) 21

Appendix B: Concept Index

Concept Index

A

arithmetic........... 14

C

K

keyboard............. .. il 2

37
rlr\lz-l‘éa—logical predicate........................ 16
MOde SPEC. .o vttt 2
rll()\Itation 2
[]);:edicate SPEC .« et e 2
s?andard OTder. ..ottt 15
t’:(le:;m COMPATISON .« . v e e ettt e 15

	Introduction
	Notational conventions
	Installation
	Obtaining DyALog
	Supported Machines
	Installation
	Configuring DyALog
	Installing DyALog

	Using DyALog
	Dyacc
	Dyalog
	Dyam2asm
	DyALog executables
	An example

	Behind the screen
	LPDA
	Dynamic Programming
	Compilation Process
	From programs to LPDA
	From LPDA to Abstract Machine Code
	Emitting C code

	Execution

	Syntax
	Terms
	Standard terms
	Immediate unification
	Operators
	Feature Terms
	Enumeration variables
	Hilog terms

	Programs
	Clauses
	Definite Clause Grammars
	Directives

	Built-In Predicates
	Input / Output
	Reading-in Programs
	Input and Output of Terms
	Character Input/Output
	Stream IO
	Socket IO
	DEC-10 Prolog File IO

	Arithmetic
	Comparison of Terms
	Control
	Error and Exception Handling
	Information about the State of the Program
	Meta-Logic
	Modification of the Program
	Internal Database
	All Solutions
	Debugging
	Execution Profiling
	Definite Clause Grammars
	Miscellaneous

	Directives
	General Directives
	Compiler Directives
	Directive Files

	Typed Feature Structures
	Tree Adjoining Grammars
	Range Concatenation Grammars
	Standard Operators
	Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Index of Built-Ins
	Concept Index

