MWEs in the FRMG framework

Éric de la Clergerie

<Eric.De_La_Clergerie@inria.fr>

http://alpage.inria.fr
INRIA Paris-Rocquencourt / Univ. Paris Diderot

AIM-WEST & PARSEME-FR Workshop
Grenoble, 3–4 October 2016
Since 2004, FRMG, a large coverage TAG for French

- generated from a meta-grammar
 - with elementary trees built from constraints
 - and constraints from classes, that inherit from ancestor classes and may be combined
 - \sim compact grammar thanks to tree factorization (381 trees)

- as input, a word lattice (DAG) built by SxPIPE
 - \sim keep lexical and segmentation ambiguities

- as output, all (full or partial) parses as share forests
 (derivation forest then dependency forest)

- Disambiguation phase to get a dependency tree, using
 - hand-crafted rules with hand-crafted weights
 - now weight tuning by learning from French TreeBank (FTB)
 + attachment affinities learned on large corpora (distributional hyp.)
 - \sim 97% full parse coverage on FTB, and \sim 88% accuracy (LAS) on FTB test

- try it on FRMG wiki at http://alpage.inria.fr/frmgwiki
Some « easy » MWEs

Most MWEs are actually handled by SxPIPE, as lexical entries found in LEFFF lexicon (adv, det, prep, csu, nc, . . .)

Generally, we keep an ambiguous reading in word lattices

Parsing selects the valid readings, with or without MWEs

By default, the post-parsing disambiguation phase favors MWEs (less clear after tuning)
also provided by **SxPIPE** : similar to the previous scenario

- Pb with entities not or badly recognized by **SxPIPE**
- favoring longest named entities is not always the best choice!
A few classes/trees in FRMG to handle quoted NEs
Multi-word terms

FRMG has been used to extract terms (from corpora), They may then be injected within FRMG
- specialized domains (e.g. legal, medical)
- & big volumes (10 to 100K terms)
- no integration in LEFFF (it is a choice !)
- could be handled by a new module in SXPIPE (as NEs)

But in practice :
- (most) terms have a regular internal syntactic structure (e.g. N de N)
- therefore, handled only at disamb time, with 2 rules
 ▶ -break_term to penalize breaks within a term
 ▶ -RESTR_mod_on_term to penalize modifiers not on term heads
- however, don’t warrant we get the right internal structure for a term

Comment gérer l’extraction d’information sur corpus ?
Predicative nouns and light verbs

Combination of:

- **lexical information in LEFF** on predicative nouns and light verbs

 \[
 \text{problème cfi } \text{[pred="problème<Suj:cln|sn,Objà:(à-sn|cld)>,

 lightverb=poser"]}
 \]

- a verbal arg \text{ncpred} in FRMG verbal trees (from meta-grammar)

- a transfer of subcat frame from pred. noun to light verb (at parsing time)
Stretching to the limits

Actually, this idea of predicative nouns extended to other categories!

Maybe going too far!
In **LEFFF**, 320 lexical entries for predicative nouns + 709 special ones ⇒ many are missing!

- a few others added locally in **FRMG** such as « *prêter serment* »

- experiments tried on « *Tables du Lexique-Grammaire* » with **Elsa Tolone**
 30700 entries ⇒ too many, rare cases, no probabilities
 e.g. *pratiquer le yoga royal*

- Other resources welcome!
Discontinuous constructions

Using anchors and co-anchors in elementary trees.

Inherit from coordination classes and apply to many categories (NP, S, AdjP, . . .)
The situation is more complex for locutions that do not fit usual parts-of-speech (noun, adj, v, …)

Case of est-ce que and c’est X que Y:
added a class in metagrammar (≈ 1 tree)
 + inherit from a verbal class
 + constraints (anchor=être, mood, imp. subject, …)

```plaintext
class cleft_verb
{
  <: _verb_or_aux;
  node v : [ cat:aux, adj: no,
             bot: [ form_aux: être, diathesis: active,
                    mode: ~imperative | gerundive | infinitive ] ];
...
}
```
Other locutions

FRMG has a few classes for other verbal locutions ici : **il y a** as a phrase **used** as a temporal adverbial (**role**)

```plaintext
class verb_ilya_as_time_mod
{
  <: _verb_canonical;
  node v:[ cat:v, lex: avoir ];
  desc.ht.imp = value(+);
  desc.ht.extraction = value(-);
...
}
```
Other locutions (even more exotic))

Specific constraints (unsat nominal subject, . . .) and role (adverbial)

```plaintext
class verb_oblige_as_mod  %% nobility obligates
{
  <: categories;
  node S: [type: std, cat: S, adj: no];
  S >> subject; S >> v; Anchor = v; subject < v;
  node subject: [type: subst, id: subject, cat: N2, top: [sat: -]];
  node v: [cat: v, lex: obliger, bot: [mode: indicative, person: 3]];
  node(subject).top = node(v).bot {.@ngp};
  ...
}
```

Fin de l’appartheid oblige, . . . (FTB)
MWEs generally not very visible in dependency trees
may be deduced from tree names
not elegant to add (many very specific) classes in FRMG for locutions
best to deal with them at lexicon level
classes/constraints not always obvious to describe
syntactic restrictions but also semantic ones

To be done exemples :
- *n’importe quoi/où/comment/...*: il accepte *n’importe quel* travail
 actually, part of them present in LEFFF
- *je/on/nous ne sais (pas ?) qui/quoi/comment/où/...*:
il a un *je ne sais quoi* de bizarre
The unitary representation of MWEs in *LEFFF* not always the best choice:
⇒ mask (productive) internal syntactic structures
The notion of \textit{predet} is productive

Multi-words preps and conjunctions resulting from a productive construction?

\textit{afin|avant|après|au point|dans le but|de peur|... (de)/que}

also, a productive construction would allow modifiers in the middle

\textit{Et au point parfois de} ne plus pouvoir pénétrer dans l’appartement
\textit{Ce déploiement d’énergie est en place afin, souvent, de combler un vide intérieur.}
FRMG can output parses following several annotation schema: DepXML, Passage, FTB/Conll, SPMRL, UD

However, various conventions and lists for MWEs ⇒ conversion issues

2 main cases to consider:

- easy one: sequence for FRMG → MWE for target schema ⇒ collapse internal FRMG dependencies
- complex one: MWE for FRMG → sequence for target schema ⇒ invent missing internal structure, using (schema-dependent) rules
An example of conversion rule for dates targeting Universal Dependencies

% Mercredi 26 Novembre
udep_mwe_complex_expansion([day[], N, month[]],_,
 [head @ ("NOUN", "nc"),
 (nmod: 1) @ ("NUM", "adj"),
 (compound: -2) @ ("NOUN", "nc")
])
) :- is_number(N).
Several mechanisms in FRMG to handle MWEs tend to delay MWE processing when no syntactic impact

Need to get something more uniform (but diversity of MWEs !)
- better separation lexicon/(meta-)grammar (but interactions)
- frontier between MWEs and (productive) syntactic constructions

A possible answer: richer lexical entries of MWEs providing
- a unitary view (when possible) as noun, adv, csu, ...
- an internal view + flexible parts + role
dependency structure, constraint layer, class/tree ...
- maybe a library of specialized syntactic patterns
(between meta-grammar & lexicon)

goal: possibility to use FRMG’s trees (rather than classes)
instantiating/blocking configurations thanks to constraints

however better to get representations independent from FRMG
Other themes related to MWEs

- Term extraction from large parsed corpora
 look at http://alpage.inria.fr/Lbx (guest/guest)

- Distributional clustering with term injection, from large parsed corpora
 again look at http://alpage.inria.fr/Lbx (guest/guest)

- **MAF**: Morpho-syntactic Annotation Framework, ISO standard
 clear separation between tokens and word-forms (n-m mappings)